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The addition of nucleophiles to imines1 and metalloenamine
additions to electrophiles2 are two of the most important methods
for the preparation of diverse amine structures. The addition of a
variety of nucleophiles toN-sulfinyl imines is increasingly being
used for the asymmetric synthesis of a broad range of amine-
containing compounds,3,4 and recently, the highly diastereoselective
addition of metalloenamines derived fromN-sulfinyl ketimines to
aldehydes has been developed for the asymmetric synthesis of 1,3-
amino alcohols.5 However, in the course of studies on the
applicability of theN-sulfinyl metalloenamine additions to other
electrophiles,R-alkylations of the metalloenamines with alkyl
halides were not successful. We attributed these results to the strong
electron-withdrawing character of the sulfinyl group, which attenu-
ates the nucleophilicity of the metalloenamine. Therefore, we
envisioned that the significantly more basic metalloenamines
derived fromN′-sulfinyl amidines would be sufficiently reactive
to enableR-alkylation. Herein we describe the highly diastereo-
selectiveR-alkylation of N′-tert-butanesulfinyl amidines and the
versatility of the resultingR-alkylation products in the asymmetric
synthesis of amines that contain bothR- andâ-stereocenters. The
utility of this chemistry is further demonstrated by the first
asymmetric synthesis of the antimicrobial marine natural product
(6R,7S)-7-amino-7,8-dihydro-R-bisabolene.6

Synthesis ofN′-tert-butanesulfinyl amidines4 can be achieved
in two steps from ortho esters (Table 1).7 Condensation oftert-
butanesulfinamide1 and ortho esters2 with 0.5 mol %p-TsOH,
followed by the reaction of the imidate products3 with morpholine
using NaCN as a catalyst, afforded4 in high yields.

Examination of theR-alkylation ofN′-tert-butanesulfinyl amidines
with a number of bases and solvents established that deprotonation
of 4 with KHMDS in THF/toluene, followed by reaction with alkyl
halides, provided the alkylated amidine products5 in high yields
and with excellent diastereoselectivities (Table 2). The alkylation
of amidine4awas performed at-78 °C with several allyl bromides
and benzyl bromide to afford5a-d in high yields with >98:2
diastereoselectivities. Reactions with the more hindered amidines
4b and4c required an increase in the reaction temperature to-40
°C, but the alkylation products were still obtained with>96:4
diastereoselectivities (entries 5-7).

Successful transformation of the amidineR-alkylation products
to N-sulfinyl aldimines and ketimines was essential to achieving a
powerful and versatile method for the asymmetric synthesis of
amines. Among a number of reducing agents examined to convert
the amidines to aldimines, Red-Al was found to be the most
effective, with reaction of5d with Red-Al at -40 °C providing
the desired aldimine6d in 86% yield (Scheme 1).8 Addition of a
mixture of an organolithium reagent and CeCl3 proved to be most
effective for converting the amidines to ketimines,9 with the reaction
of 5d with MeLi and CeCl3 at -48 °C affording methyl ketimine
7d in 87% yield. It is noteworthy that no epimerization occurred

in either the Red-Al reduction or the methyl cerium addition
reactions. As previously reported,N-tert-butanesulfinyl imines are
versatile precursors for the asymmetric synthesis of protected chiral
amines.3 For example, the addition of MeMgBr to6d providedanti-
8d in 95% yield with 99:1 dr.10 Moreover, reduction of ketimine
7d could be accomplished with high selectivity to obtain either
amine stereoisomer, with L-Selectride affordinganti-8d in 89%
yield with 96:4 dr and with NaBH4 in the presence of Ti(OEt)4

affordingsyn-8d in 86% yield with 96:4 dr.11 The structure ofanti-
8d has been determined by X-ray crystallography and thus
establishes both the sense of induction in the alkylation step (Table

Table 1. Synthesis of N′-tert-Butanesulfinyl Amidines 4

entry R R′ yield of 3 (%)a product 4 yield of 4 (%)a

1b Me Et 94 4a 88
2c Ph Me 97 4b 83
3c Bn Me 97 4c 88

a Isolated yield.b First step was carried out with 1 equiv of1 and 3 equiv
of 2 for 3 h. c First step was carried out with 1 equiv of1 and 1.5 equiv of
2 for 12 h.

Table 2. Asymmetric R-Alkylation of N′-Sulfinyl Amidines 4

a Diastereomeric ratio.b Isolated yield.c Performed with 3 equiv of MeI.
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2) and the relative stereochemistry obtained in the imine addition
steps (Scheme 1).

To demonstrate the utility of this methodology, the first asym-
metric total synthesis of (6R,7S)-7-amino-7,8-dihydro-R-bisabolene6

18 was carried out (Scheme 2). The amidine substrate13 for
R-alkylation was synthesized in four steps from commercially
available ortho ester9. Condensation of1 with 9 afforded imidate
10 in 76% yield. Because the coupling of10 with isopropenyl-
magnesium bromide did not provide12, bromide10was converted
to iodide 11, which was successfully coupled with the Grignard
reagent and CuI. Imidate12was converted to13 in 93% yield under
the standard reaction conditions for the conversion of the imidates
to the amidines. Allylation of13 was then performed at-78 °C to
afford a single diastereomer of14 in 82% yield, and amidine14
was subsequently converted to ketimine15 with MeLi and CeCl3
in 82% yield. Ring-closing metathesis with the Grubbs second-
generation catalyst then gave16 in high yield.

One of the key steps in the synthesis was organolithium addition
to 16 to provide the tertiary carbinamine17. Notably, organometallic

reagent addition toN-sulfinyl ketimines provides the only general
method for the asymmetric synthesis of tertiary carbinamines.12

Gratifyingly, precomplexation of imine16 with Me3Al in toluene
at -78 °C, followed by addition of the organolithium reagent in
hexanes, provided17 as a single diastereomer in 56% yield. Both
the Me3Al activating agent and the use of noncoordinating sol-
vents were essential for suppressing competitiveR-deprotonation.
Cleavage of theN-sulfinyl group from17 under acidic conditions
then provided (6R,7S)-7-amino-7,8-dihydro-R-bisabolene18 in 87%
yield.

In summary, the highly diastereoselectiveR-alkylation of N′-
tert-butanesulfinyl amidines has been developed along with methods
for converting the alkylation products to enantiomerically enriched
amines that incorporate bothR- andâ-stereocenters. As evidenced
by the first asymmetric synthesis of (6R,7S)-7-amino-7,8-dihydro-
R-bisabolene, this method should provide for the efficient asym-
metric syntheses of a wide variety of amine-containing compounds.
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